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Abstract: Analyticalandexperimentalstudieswere performedto investigatethe effectof gearrim thicknesson
crack propagationlife. The FRANC(FRactureANalysisCode)computerprogramwas used to simulatecrack
propagation.The FRANCprogramusedprinciplesof linearelasticfracturemechanics,finiteelementmodeling,
and auniquere-meshingschemeto determinecracktip stressdistributions,estimatestress intensityfactors, and
modelcrackpropagation.Variousfatiguecrackgrowthmodelswereusedto estimatecrackpropagationlifebased
on the calculated stress intensityfactors. Experimentaltests were performedin a gear fatigue rig to validate
predictedcrackpropagationresults. Testgears were installedwith specialcrackpropagationgages in the tooth
fillet region to measurebendingfatiguecrack growth.Goodcorrelationbetweenpredictedand measuredcrack
growth was achievedwhen the fatigue crackclosureconceptwas introducedinto the analysis.As the gear rim
thicknessdecreased,the compressivecyclic stressin the geartooth fillet regionincreased.This retardedcrack
growthand increasedthe numberof crackpropagationcyclesto failure.
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Introduction: A commondesigngoalforgearsin helicopteror turboproppowertransmissionsis reducedweight.
To help meet this goal, somegear designsuse thin rims.Rims that are too thin,however,may lead to bending
fatigue problemsand cracks.The most common methodsof gear designand analysis are based on standards
publishedby the AmericanGear ManufacturersAssociation.Includedin the standardsare rating formulas for
geartooth bendingto preventcrackinitiation[1]. Thesestandardscanincludetheeffectofrim thicknesson tooth
bending fatigue [2]. The standards,however,do not give any indicationof the crack propagationpath or the
remaininglifeonce a crackhasstarted.Fracturemechanicshasdevelopedintoa usefuldisciplineforpredicting
strength andlifeof crackedstructures.

Ahmad and Loo [3] applied fracture mechanics to gear teeth to illustrate the procedure and estimate crack
• propagationdirection.HondaandConway[4]alsoappliedfracturemechanicsto simulatetoothcrackpropagation,

compute thresholdloads, and calculatetooth life. Flaskerand Jezernik [5]applied fracture mechanicsto gear
teeth to estimate stress intensityfactorsand gear life. Researchersat TohokuUniversityin Japan performeda
seriesofanalysesandexperimentsto determinetheeffectofresidualstressoncrackinitiationandpropagation[6,7].
Also, Daniewicz,et al. [8] developeda comprehensive,self-containedanalysispackageto refinethe spur gear
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bending fatigue theory using fracture mechanics.Lastly, Flasker and Pehan [9] described their method for
calculatingcrack propagationin gear teeth usingfracturemechanics.Muchof the workof the abovereferences
consideredonly an initial crack and propagationpaths were not considered. Many of the references that did
considercrackpropagationassumedthepropagationoccurredin astraightpath.Inaddition,experimentalvalidation
of the cited analyseswassparse.Finally,no workusingfracturemechanicswas performedfor thin-rimgears.

The objectiveof this studywas to determinethe effectof gearrim thicknesson crack propagationlife.From an
extensivestudy [10],linearelasticfracturemechanicswasusedto analyzegeartooth bendingfatiguein standard
andthin-rimgears.Finiteelementcomputerprogramswere usedto determinestressdistributions,estimatestress
intensityfactors, andmodelcrackpropagation.Variousfatiguecrackgrowthmodelswere used to estimatecrack
propagationlife. Experimentaltests were performedto validatepredictedcrackpropagationresults.

Fatigue Crack Growth: Manymachine elements,such as gear teeth,are cyclicly loadedin application.The
overall fatiguelifeof suchcomponentsmaybe representedby threedistinctphases: 1)crack initiation,2) crack
propagation,and 3) finalfailure.Oncecrackinitiationhasoccurred,fracturemechanicsmaybe used to estimate
crack propagationfatiguegrowthrate andtime to finalfailure.

The most universallyusedmethodto calculatecrackpropagationfatiguecrack growthwas postulatedby Paris
andErdogan[11]. ConsideredwerepurelymodeI loadedspecimenssubjectedto cyclicload.Furtherconsidered
was unstablecrack growthsuch that the stressintensityfactorgrewwith increasingcracksize. Parispostulated
that therate of crackgrowthwith respectto numberof stresscycleswasa logarithmicrelationshipwith the stress
intensityfactor range as da

m = C(aK)n (i)dN

wheredo is the changein cracklengthfor dNnumberof stresscycles,AX is the rangeof themodeI stress
intensity factor at a given time, and C and n are material constants. The material constants, C and n, must be
determinedby someexperimentalmeans.

Furtherresearchof fatigue crack growth hasshownthatthereexiststhreeimportant factors not considered in the
Parismodel.Firstwastheeffectof loadratio,R,oncrackgrowth(R= minimumcyclicload/ maximumcyclic
load).Secondwastheinstabilityof crackgrowthobservedwhenthestressintensityfactorrangeapproachedthe
material'sfracturetoughness index, Kto Thirdwasthepresenceof astress intensity threshold factor, Z_th. The
stress intensity threshold factor is thehighest stress intensity factor in whichnocrackgrowth wouldoccur.The
Collipriestcrackgrowthmodel[12]accountsfor theseeffectswhere

= n . tanh_l/. _,(1- R)KIcAKt_h

da C(KlcZth)-.exp[ I ln(°- R)K'c] (2)

aN _,AKth )

L )
In addressingapplicationsto gears,Inoue,et al. [7]describesfatiguecrackgrowthof gearbending fatiguetests.
Here, crack growth equationswere derivedas a functionof crack depth through a gear tooth. The expression
derivedfor crackgrowthrate damn, as a functionof stressintensityrange,zlK,was

da [ (I-_n ) (!_r(''q- AKthrl) f°rLur_th<_r_<ZkKC (3) 0

l'_ _--'_ _/c_ - _-_) f°rM(c<AK<AKIc

where the parameters Kjc, o:, Z_c, Z_th, 71,and _.were all estimated as a function of tooth hardness [7].
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CrackPropagation Simulation: Theanalysisof the currentstudyusedthe FRANC(FRactureANalysisCode)
computerprogramdescribedbyWawrzynek[13].FRANCis a generalpurposefiniteelementcodefor the static
analysisof cracked structures.FRANCis designedfor two-dimensionalproblemsand is capable of analyzing

• planestrain,plane stress,or axi-symmetricproblems.

Among the varietyof capabilities,a unique feature of FRANCis the ability to model a crack in a structure.
• FRANC uses a methodcalled "deleteand fill" to accomplishthis.To illustrate,the user would first define an

initial crackbyidentifyingthe nodeof thecrackmouthandcoordinatesof thecracktip.FRANCwillthendelete
the elementsin the vicinityof thecracktip. FRANCwillnextinserta rosetteof quarter-point,six-nodetriangular
elementsaroundthe cracktip to modeltheinversesquare-rootstresssingularity[14,15].Finally,FRANCwillfill
the remaining area betweenthe rosette andoriginal mesh with conventionalsix-nodetriangularelements.The
user canthenrunthe finiteelementequationsolver to determinenodaldisplacements,forces,stresses,andstrains.

Afurtheruniquefeatureof FRANCis the automaticcrackpropagationcapability.Afteran initialcrackis inserted
in a mesh,FRANCmodelsapropagatedcrackasa numberof straightline segments.Foreach segment,FRANC
models the cracktip usinga rosetteof quarter-pointelements.FRANCthensolvesthe finiteelementequations,
calculatesthe stress intensityfactors, and calculatesthe crack propagationangle. After the crack propagation
angle is determined,FRANCthenplaces the new crack tip at the calculatedangleand at a user-definedcrack
incrementlength.Themodelis thenre-meshedusingthe"deleteandfill"methoddescribedabove.Theprocedure
is repeateda specificnumberof timesas specifiedby the user.In the current study,the stress intensityfactors
were determinedfromthe calculatednodal displacementsusingthe displacementcorrelationmethod [16].The
methodof ErdoganandSih [17]was usedin the currentstudyto determinethe crackpropagationangle.

Once the stress intensityfactorsare determinedfor each segment,the predictednumber of crack propagation
cycles can be estimatedusingthe fatiguecrack growthmodels.Regardlessof the modelused, the crackgrowth
rates,daldN,were of the form

da
= g(M() (4)

whereg(AK) is givenby Eq. (1) for the Parisrelationship,Eq. (2) for the Collipriestrelationship,or Eq. (3) for
Inoue's method.Thepredictednumberof crackpropagationcyclesfor the ithcracksegment,Ni,wasestimatedby

Ni = ai - ai'_l+ Ni. 1 (5)g(ta¢i)

whereai was the cracklength of the ithsegment,ai.1was the cracklength of the (i-1)thsegment,Ni-!was the
number of cycles of the (i-1)thsegment,and g(z5_i) was the average crack growth rate of the ith and (i-1)th
segments.Notethat al was the initialcracklength,N1=0,and i variedfrom 2 to the total numberof segments.

Gear Finite Element Modeling: Basic gear tooth geometrydata was input to a tooth coordinategeneration
computerprogram.The toothcoordinategeneratorprogramusedthe methodofHefeng,et al. [18] to determine
the tooth coordinates.The output was tooth coordinateand rim coordinatedata which defineda single-tooth
sectorof agear.This outputwasusedby acommercialavailablepre-and post-processingfiniteelementanalysis

" softwarepackage[19].This packagecreatedthe finiteelementmeshof the completegear.FRANCthenusedthis
meshandperformedcrackpropagationsimulations.

• Figure 1showsa samplefiniteelementmesh of an uncrackedgear.The toothgeometryusedmodeledthatof the
test gears of the NASALewis Spur Gear FatigueRig (describedin the followingsection).The analysisused
8-node, plane stress,quadrilateralfiniteelements.The mesh was refinedin the region of the loaded tooth for
improvedaccuracy.Themodelof Fig. 1 had2353elementsand7295nodes.Materialpropertiesusedwerethat of



AISI 9310steel.The tooth load wasplacedat the highestpoint of singletooth contact.For boundaryconditions,
fourhub nodeswerefixed.In addition,gearswithvariousrimthicknessesweremodeled.Theparameterdescribing
the rim thicknesswas the backupratio,mB,where

b
mB = -- (6)h

whereb was the rim thickness, andh wasthe tooth wholedepth. Gearswithvariousbackupratios weremodeled
by incorporatingslots in the model.All casesused the samefinite elementmeshfor the loadedtooth. °

TestFacility: Crackpropagationexperimentswereperformedin theNASALewisSpurGearFatigueRig (Fig.2).
The test standoperatedon a torque-regenerativeprinciplein whichtorquewascirculatedin a loop of test gears
and slave gears.Oil pressurewas suppliedto loadvanesin one slavegear whichdisplacedthe gearwith respect
to its shaft.This produceda torqueon the testgears,slavegears,andconnectingshaftsproportionalto the amount
of appliedoil pressure.A 19kW (25-hp),variable-speedmotorprovidedspeedto the drive shaftusinga belt and
pulley.The lubricantused for the gears,bearings,andloadingsystemwas a syntheticparaffinicoil. The testgear
lubricantwas filtered througha 5-micronfiberglassfilter.

Test Gears: The test gears were 28-tooth,8-pitch,20° pressureangleexternalspur gears with a face widthof
6.35 mm (0.25in.).Theteeth hadinvoluteprofileswithlineartip reliefstartingat the highestpointof singletooth
contactand endingat the tooth tip at an amountof 0.013mm (0.0005in.).All test gearsused in the experiments
were fabricatedandmachinedfrom a singlebatch of material.The testgear materialwas consumable-electrode
vacuum-meltedAISI 9310 steel.The gears werecase-carburizedandground.The teeth were hardenedto a case
hardness of Re61 and a core hardness of Re38. The effectivecase depth (depth at a hardnessof Re 50) was
0.81 mm (0.032 in.).Two differenttest gear designswereconsidered.The firstwas a thick-rimmedgearwith a
backupratioof mB=3.3(Fig.3(a)).The secondwasa thin-rimmedgearwhichincorporatedslots(Fig. 3(b)).The
backupratio of the thin-rimmedgear wasmn=0.3.

Itwasbelievedthat tooth bendingfatiguecrackswouldbedifficultto initiatebasedonthe loadcapacityof thetest
rig.Due to this, notches were fabricatedin the fillet region(loadedside)on onetooth of each of the test gearsto
promotecrackinitiation.The notcheswerefabricatedusingelectrodischargemachining(EDM)with a 0.10-mm
(0.004-in.)diameterwire electrode.Thenominalnotchdimensionswere0.20mm(0.008in.) inlengthand0.13 mm
(0.005in.) in width along the full face widthof the tooth.Thenotcheswere locatedat the same locationforboth
test gears. This location was at a radius of 40.49mm (1.594in.) on the fillet, which was the position of the
greatest tensile stress for the solid gear (mB=3.3).The notches produced a stress concentration factor of
approximatelythree as determinedusinga finiteelementanalysis.

Instrumentation: The standardtest rig instrumentationmonitoredtestgear speed,oil load pressure,test gear
and slave gear oil pressure, and oil temperatures.Also, overall test stand vibrationwas monitored using an
accelerometermounted on the top housing. In additionto the standardfacility vibrationsensor,an advanced
vibrationprocessing diagnostic system was installedin the test stand to help assist in crack detection. Crack
propagationgageswere usedin the experimentsto determinefatiguecrackgrowth.Specialgageswere fabricated
for installationin the toothfillet regionofthe test gears.The gageshadten circularstrandswithan inner radiusof
1.52mm (0.060in.)and anouter radiusof 3.05 mm(0.120in.)(Fig.4).Thestrandswere designedto breakasthe
crackpropagatedthoughthem,whichinturn,increasedtheelectricalresistanceof thegage(Fig.4(a)).Figure4(b)
shows the installationof a gage in the fillet regionof a notchedtooth.A gagewas installedon each side of the ,
toothflankforeachgearinstrumentedwithcrackgages.Theelectricalresistanceof thecrackgagesweremonitored
along withthe loadcycle countto estimatecyclesas afunctionof cracklength.The informationfromthe rotating
crack gages was transferred throughbrush-typeslip rings.Also, an infraredtach sensor was used to measure °
number of loadcycles.

Measured Gear Fatigue Crack Growth: The thin-rimmedgear wasusedin test 1.The test was runat 89 N.m
(786 in..lb) torque and 10,000rpm speed for 6.5 hr, at which time rim fractureoccurred. Figure5 plots the



number of load cycles as a functionof the measuredcrack length.The crack gageresults indicatedthe crack
growthwasnon-uniformthroughoutthe toothface width.A crackstartedon the rear flankof the tooth at the tip
ofthe notchandreachedan initialsizeof0.46mm(0.018in.)at 1,060,000cycles.Thecrackcontinuedtopropagate

• throughthe rearflankbut didnotreachthe frontflank untilapproximately2,680,000cycles.At 2,910,000cycles,
the crackreacheda sizeof 0.64 mm(0.025in.)onthe frontflank,butcompletedpropagatedthroughthe reargage
by this time. Even though the crackinitiationtime wasnot uniformthroughoutthe tooth face width, the crack

, propagationrate was uniform.This wasindicatedby the similarityin slopes of the curves in Fig. 5 for gages 1
and 2.

The thick-rimmedgear was used in test 2. This gear was run at 136N-m(1200 in..lb)torque and 10,000rpm
speed for 15 minutes, at which time tooth fracture occurred.Figure6 gives the processedcrack propagation
results for test 2.Note that the crackinitiationandcrackpropagationwasfairlyuniformthroughoutthe toothface
widthfor this test.

Comparisonof PredictedandMeasuredCrackGrowth: The FRANCcomputerprogramwasusedto simulate
crack propagationandcalculatemodeI stressintensityfactorsas a functionof cracklength.Thepredictedstress
intensityfactorswere thenusedwiththreedifferentfatiguecrackgrowthmodels(Paris,Collipriest,andInoue)to
estimatecrackpropagationlife.

A comparisonof predictedcrackpropagationcyclesusingthe Paris,Collipriest,andInouemethodsis shownin
Fig. 7. For this, the thin-rimmedmodel(mB=0.3)was usedto simulatethe testgearof Fig. 3(b).An initial crack
of0.64 mm(0.025in.)wasplacedinthetoothfilletat thelocationofthemaximumtensilestress.Crackpropagation
was thensimulatedand the modeI stressintensityfactoras afunctionof cracklengthis givenin Fig. 7(a). From
this, six differentfatiguegrowthcaseswereconsidered.Thefirst fourcasesusedthe Parisequationandmaterial
constantsofAIS19310specimensfromexperimentsof AuandKe [20].ThefifthcaseusedtheCollipriestequation
andAISI 9310materialconstantsfrom FormanandHu [21].The loadratiousedwasR=-2.6as determinedfrom
the finiteelementanalysis.The sixthcaseusedInoue'smethodandthe materialconstantsofthe SCM415material
(SCM415is a high-strengthJapanesesteel,similar in propertiesto AISI9310).Thepredictednumberof cycles
per cracklengthvaried significantlyamongthecases studied(Fig.7(b)).Note thatthe cyclesweredefinedas the
number of crack propagationcyclesafter an initial crackof 0.64 mm (0.025in.).

Predicted crack growth for the m8---0.3and 3.3 gears were comparedto the measuredcrack growth from the
experiments.Again, the sixdifferentpredictionschemesas mentionedabovewereused.Thepredictednumberof
crackpropagationcyclesusingthe sixthschemeswere,onthemostpart,extremelylowcomparedto the measured
numberof cyclesfromthe experiments.To accountfor this,theconceptof fatiguecrackclosurewasinvestigated.
Elber [22] performedcrack experimentson aluminumalloys and deduced that residual compressivestresses
existednear the crack tip regiondue to plasticdeformation.These residualstressesreducedthe effectivestress
intensityfactor range (and thus, increasedcrackpropagationlife) and provideda betterfit to experimentaldata
than other empiricalexpressions.Elberproposedan effectivestressintensityrangeratio, U, suchthat

zXKeg= U(aK) (7)

where zlKeffwas the effective stress intensity factor range. Elber then used the effective stress intensity factor
• range in the Paris fatigue crack growth model. In addition, Elber defined U through experimental studies as a

linear function of the load ratio, R.

, The conceptof fatiguecrackclosurewasappliedto the currentgearcrackexperimentsandpredictions.A study
was thenconductedto estimatetheeffectivestressintensityfactorrangeratiofor thegearcrackexperiments.The
predictednumber of crack propagationcycles using the previouslymentionssix schemeswere plotted versus
crack lengthat a varietyof arbitrarilychosen Uratios.Forthe Parisequationandmaterialconstantsn=2.954and



C=8.433x 10-9mm/cyc/(MPa_/m)n,goodcorrelationbetweenpredictedcrackcyclesandtheexperimentsoccurred
when: 1) U---0.4forR=-2.6, and2) U---0.8forR=-0.1.Assumingalinear relationbetweenUand R produced

U= 0.82+0.16(R) (8)

Figure 8 shows a sample comparisonof predictedand measuredcrack growth whenthe fatigue crack closure
concept was used. The cycles were definedas the numberof crackpropagationcycles after an initial crackof
0.64 mm(0.025 in).It shouldbe notedthat goodcorrelationwasalsoachievedwhenthe Collipriestequationwas
used with certain Uvalues.This produceda relationshipsimilarto Eq. 8 but with differentcoefficients[10].

Figure9 displaysthe effect of rim thicknesson predictedmode I stress intensity factors and predicted crack
propagationcycles.The stressintensityfactorsweredeterminedfromFRANCusingtheappropriatefiniteelement
models. The Paris equationwas used alongwith the effectivestress intensityrange ratios of Eq. 8. The initial
cracks of the various modelswere placedat the locationof the maximumtensile stress in the tooth fillet. The
stressintensityfactorswerelowestfor the mB---0.5case.This gavethe highestpredictednumberof cyclesfor the
cases studies. The cycles all were defined as the number of crack propagationcycles after an initial crack of
0.28mm (0.011 in).Thestress intensityfactorswerehighestfor themB=0.3case.However,the predictedlife for
this was somewherebetween the case of mB--0.5and 1.0due to the fatiguecrack closure effect.The cases of
mB=3.3and 1.0gavenearlythe samepredictedlife.

Conclusions: Analyticalandexperimentalstudieswereperformedto investigatetheeffectof gear rimthickness
on crack propagationlife. The followingconclusionswere made: 1)Good correlationbetweenpredictedand
measuredgear crack growth was achievedwhen the predictionsused the Paris crack growth equationand the
conceptof fatiguecrackclosure.2)For thinrims,adecreasein rimthicknesscausedan increaseinboth thestress
intensityfactor and the compressivecyclic stress in the gear tooth fillet region.The increasein stress intensity
factorpromotedcrackgrowthwhile the increasein cycliccompressivestresstended to retardcrackgrowth and
increasethe number of propagationcyclesto failure.
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Figure 1.--Finite element model of gears used in
crack propagation studies, solid model, mB = 3.3.
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Figure 2.--NASA Lewis Spur Gear Fatigue Rig. Figure 3.--Test gears used to determine effect of rim
thickness on crack propagation. (a) m B = 3.3. (b)
m B =0.3.
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